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In this review article, a progress of emerging plasma
medical science, which is a novel interdisciplinary field
that combines studies on the plasma science with those
on the medical science is introduced. The non-thermal
atmospheric pressure plasma has been used for many
medical treatments, such as for the cancer, the blood
coagulation, and the wound healing. Understanding of the
scientific principles governing the plasma medical science
leads to the promotion of world innovations not only in

the medical field but also in the agricultural one.

Keywords: plasma medicine, plasma agriculture, reactive

oxygen species (ROS), plasma activated medium (PAM)

1 U

WA, RAED T TH AWML DK TIERSE
77 A% (BEKRRET 7 X=) ) OERIAEEIC 72
D, BEEECEZELR A IR OFFE oM FY 22 Wl
ELTAMLTwS, ZhETls, ZLoWERE S
NTWVB0, ZOHTYH 2012 4812 Iseki & A3Hsesflfin
277 A~ WS L 7ofs 5, Wit s kA 5,
PNSE DS A MR DRI IR S D Z & 2R L 72
BE, FFPEETREFERTH LD, JlEHE, 2014 4
IZ Tanaka ® & Utsumi & 1%, 77 R~ % W& L e
BRI DY, DY AMNE % TEH M 6 U ORI S ¢
52 LaFEHEL, ZO0HAMEZEHYL XV THHEGEEL
7. TOT I AW L BB 7T R iGTEAR

States of the Art Plasma Bio-applications

Masaru Horr*, Kenji Isnikawa, Hiromasa Tanaka and Hiroshi
Hasmizume (Nagoya University), Takashi Konoo (Toyama Uni-
versity),

T464-8603 ZERI A i =i TR X A ZHT
TEL:052-789-4420, E-mail: hori @nuee.nagoya-u.ac.jp

M A R E F 1045 (2017)

(plasma activated medium: PAM) & MEEN?, & kD3
VIOV B3 A %2 = 7 A BT HERR L 7 (8T IC PAM %
B9 2 2 & TR O BEE IR oAk
T, SRR AIC S FERROZIR DG 51, PAM DA
DFEFICIRI KT 2 B 2B EDR I N, 2D
X977 X2 DG X > THK 17 PAM D
[EEE IR, 77 A< X D F4: L 2Ho b
YPREOMEGICER L TED, 2o Tt
R OREFE DD fLA TV 5,

INET, VTS Ao inHiE, T L THEY
heoEEHEEC Ty v 7, REKHICEWT, 7
7 A LR EE OMBAEN Z2 i B I T &
fo. =77, NAFIGHOBR TR, IBRFERKIET 7
A2 H0w3ZIckoT, 79 A=pHIZ, K
HINE L O o 2RISR EARIC N RDIEDI> T 0B, 22
BAET, 77 A< LAk L O EER %I L
T Wit 2B 2 OB DRI LT, EWNbT T
7 AW 2 G L 3 n, 77 A
LT 2 WA O TG R D 258 Z D AR E A~ DIEH]
IOWTHHEMBEIHEATE, 22T, ZOT7HD
FOE DR Z N T .

2 FEHARESZXY
21 TFSAVERHODRE

KRAEETIE, SRORTHZERBEDEmL, e
ko T, FAMESERL, ET0oRELEELL %
%, il TECEH 77 A2 i )T v, BCE 7
7 A2 T, A AMREZ, 6000K HEETERT 3,
L7235 T, ZOANAMEZAMIZL T, BTOMEE
DB LT, JEPHRAEZR BT 2 0003, IRV
KRET 7 X<%#ERT 5 LT, REnPens, %
T, 79 ADEREEZNL, Bt (Bref4v
R BOGDHEGERY Ze 764 (FEEEMSIE, avalanche) 7%, X
BHROWTH 2 (Fig. 1) Y.



12 Bs, 1)l

B RE, BN &8, a5k &

Multiplication by avalanche
of ionization

Acceleration by high voltages

Figure 1. Multiplication of  ionization
(Avalanche) in application of high electric
field.
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atoms and ions®. Reprinted with permission

from Reviews of Modern Plasma Physics.
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Figure 3. Equilibrium conditions on a balance

between thermalization and relaxation of the
electronic dynamics®. Reprinted with permis-
sion from Reviews of Modern Plasma Physics.
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Figure 5. Various kinds of atmospheric pres-

sure plasma sources®. Reprinted with permis-
sion from Reviews of Modern Plasma Physics.
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Figure 7. Schematic overview of plasma-liquid interactions.
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Innovative plasma treatments in food cycle

[ Plasma in Processing — high-quality food

Plasma in Packaging — healthy food]
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Figure 17.

for cutting food losses and reducing food waste®®.
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