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Since the first observation of the energetic protons from the
interaction between the short pulse high intensity laser and
the thin-foil target, extensive studies have been carried out
for more than 15 years. In the early period, the laser energy
of kilo joule level is necessary to accelerate the protons
more than 50 MeV. Such a large amount of laser energy
is supplied only by a huge laser system, which typically
is unable to make repetitive operation. However, thanks
to the progresses in the laser technology, protons having
the energies almost ~50 MeV are successfully accelerated
by the laser system with only less than 10 J of energy and
with the capability of repetitive operation. These facts re-
ally show the advance of the laser-driven ion acceleration
towards the possible fields of applications. Here, the char-
acteristics, the mechanisms and the recent experimental re-

sults of the laser-driven proton acceleration are reviewed.
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particle acceleration
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Figure 1. Present status of Laser-driven ion ac-
celeration. Intensity of the laser vs maximum
energy of the accelerated protons. The points
encircled by red line are the data from the large
laser system which has ps pulse duration and is
basically single-shot based operation. Those en-
circled by blue line are from small laser system
which has <100 fs pulse duration and is capable

of repetitive operation.
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Figure 2. Laser temporal distribution. Laser
is irradiated on the target. The irradiated sur-
face is called “front” and the other side is called
“rear”. Before the main pulse reaches to the tar-
get, amplified spontaneous emission (ASE) with
~ns duration and the pedestal component with
<few hundreds fs duration arrive at the target.
Those pulses cause the pre-plasma on the target
front side. The spatial scale of this pre-plasma
is called scale length (/).
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Ion acceleration mechanisms for the interaction between the short-pulse ultra- high-intensity

laser and the thin-foil target. From the left side, acceleration by the strong charge separation field

(TNSA/SCSF), by Coulomb explosion, and by radiation pressure of the laser.
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Figure 4. Ion acceleration mechanism by the
interaction between the high-intensity short-
pulse laser and the thin-foil target. The SCSF
model proposed by Passoni. Ion distributes in
the region of ¢ < 0. In the region of ¢ > 0, elec-
trons trapped by the potential set at the target

exist.
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Figure 5. Coulomb acceleration mechanism. Target consists of high Z ions and protons with thin layer.

By the irradiation of the strong laser, electron sheet (shown in green) are accelerated. By the coulomb

acceleration scheme, quasi-monochromatic proton beam (shown in purple) is generated. The right hand

side shows the energy spectra of protons and high Z ions. Proton beam shows quasi-monochromatic

energy spectrum.
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27.5=208.5 MeV 285~ 317 MeV
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37.2-38.9 MeV

353 = IT.2 MeV 38.9 - 40.5 MeV

Figure 6. 40 MeV Proton acceleration results at KPSI JAEA3?. (a) Focus spot of the laser. The size
of the focal spot is two times the diffraction limited size. This is achieved without deformable mirror
system. (b) Pulse duration of the laser is 36 fs (effective FWHM). Red line shows the observed data
and the blue shows the calculated one showing Fourier transform limited shape. (c) Contrast of the

laser pulse shows more than 10. (d) Proton beam pattern detected by the CR-39 stack detector. Proton

acceleration up to 40 MeV is confirmed.
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Figure 7. Simple model used in the SCSF
model. We assume that all the electrons acceler-
ated by the laser contribute to making the charge
separation field at the rear.
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Figure 8. Proton acceleration results at GIST.

High intensity short pulse laser is irradiated on
the ultra-thin polymer target. The thickness of
the target is 10 and 30 nm. The accelerated pro-
ton energy dependency on the intensity of the
laser is shown.
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