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A new spectroscopic research of radiation induced dam-
age on DNA and its constituent molecules is proposed,
which is made possible using a liquid microjet technique
for bio-solution under vacuum in combination with
synchrotron-radiation aided site-selective excitation. The
latter part of the proposal article describes the present
state of research on the selective primary radiation
interaction by looking at base moieties of nucleotides.
X-ray absorption near edge structure (XANES) spectra
at energies around the nitrogen K-edge for nucleotides,
(AMP),
cytidine-5’-monophosophate

adenosine-5’-monophosphate guanosine-5’-
monophosophate (GMP),
(CMP), and adenosine-5’-triphosphate (ATP) in aqueous
solutions are presented. Selective excitation of a base moi-
ety using a synchrotron radiation allows us to investigate
the interaction of the base moiety with water solvent. We
discuss the change of spectral character of XANES which
reveals to the structural change of the base moiety under
different pH environmental condition of water solution.
Through the present research a scope for cooperative

direct and indirect primary radiation effets is given.
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(1) adenosine-5'-monophosphate (AMP)
NH,

OH OH

(3) cytidine-5'-monophosphate (CMP)

Figure 1.

o

oO—v

OH OH
(2) adenosine-5'-triphosphate (ATP)

OH OH

(4) guanosine-5'-monophosphate (GMP)

Structural diagrams of the nucleotides examined in the present study: (1) adenosine-

5’-monophosophate (AMP), (2) adenosine-5’-triphosophate (ATP), (3) cytidine-5’-monophosophate
(CMP), and (4) guanosine-5’-monophosophate (GMP).

) (XANES : X-ray Absorption Near Edge Structure) O
FER & BRSOV TS T 5.

TSI & B IREHRADEIR EAER DY 1 525l

Ty rubavBEEO 3L X —ERYE L v ) K
Mz, BERFEERCOREZ S TAlAEYA FET
BIRL TRV (5252 L20HICL
7o, e, BUEEIESEE D8 a v THHE#Ic
frozemcas ey r—=ofban, oER
EOMAGOLHICK D EERY =V E o7, REDE
WX BTN A FERINIE IO O TR T Db
N7, BmONEIHIL TR %

X7 LA F PICEENLILEONBRIIE, ik
L 72 8BE D KiRWINGGDS 400 eV MULICH 2 1320, B
F O KWl 530 eV (LI, KFED K s
1F300eV 5512, VDK, Lp@oBtid, %
Z1, 2145eV, 189eV fhiLlcd 5. F 7 AKIEWEE
ZHWD 0, BHOKDOBEFEDWNRKINDGH 5, 2
NS DILFE OB (1 A4 LWriEE) (% 400 eV
13T D ZEFWIIRNTEE TR X fR = 2L ¥ — gk
EEBIT, BRESHLARHERBEZRT I EPAISNT

1.1

WY 2R L TEER T, Z RV -0
RKeELBICKBAETFORGEHRE~DE, ZL T,
A F ML E W) BINRINEZ R T, ThoDET
ESOHMEZ S L TR ORI AE L, 400 eV i
WD T )L ¥ —FHIKD XANES A7 R LIicH o3
Wil RE I T R TERICE 2D EEZL &N
T&%, Figure |l IKRLAEBYEREFTIIX 7 LA
F FNOIEHEBIICOAEGEENTED, BHEICEHL
THINT % B BB IEILRA ORI Y 5 %
bDTHS, Lo T, EHED K BRI IED
XANES A7 kLI X 7 LA F FNOEEERA A3 K
WP TED X ) RIBBMHAFEHZ32Z T TV 502D
WTOHREBELRHMAZE52 50 LHffxN 2

7, TOZRNVF —FHIEIEEEONBRILE D
HIEZZLX—HICH D, Wb B “IKDE” (water
window) & WEIEI, WE D TISKDOWIIC X 2 il
RN R S W T H % 70, o TIkEEN
BB AER 252129 <, 246 OURINIBRA LK
SR & B AR E b O LB IS, Figure 2
135870 2 T4 )L X — O X FUTHT 2 T D2 I
MY 2 RINBIHEORE X2 FOREIE L TR

ma R AL F



KBREFDFEEICH T SMEICRIE - REDFIRDAME (BiR)

(6 L

o.:”

N b
~400 eV

‘H @c @OnNn @0 Or

Figure 2. Pictorial image of contributions of cross sections of constituent atoms of AMP in a strand

to radiation damage. The sizes of atoms represent the amplitudes of atomic X-ray abosroption cross

sections.
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Figure 3. Ejected electron yields of AMP as a function of X-ray photon energy. The contribution of

cross sections of constituent atoms in AMP is accounted (see text).
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Figure 4. XANES spectra of nucleotides (AMP, GMP, and CMP) in aqueous solutions (Solution) and

thin solid films (Film) as a function of photon energy.
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Table 1. Observed energies for N 1s— 7* for
AMP, GMP, and CMP in the form of thin solid

films and aqueous solutions.

Film (eV) Solution (eV)
AMP 399.6 399.7
400.9 400.9
401.7 401.8
GMP 399.8 399.8
401.3 401.3
401.8 401.9
CMP 399.2 399.3
400.3 400.4
401.3 401.4
402.7 402.7
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ATP film
(pH 2.9)
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Figure 5. XANES spectra of AMP, ATP, and
adenine. Open squares (i) and open circles (ii)
represent the yields for AMP and ATP in aque-
ous solution; solid curves, the yields for AMP
and ATP in thin solid films; and dot-dashed
curve in the bottom (iii), the yield for adenine
film.
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Figure 6. XANES spectra of AMP and ATP at different pH.
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Figure 7. Comparison of the XANES spectra
of AMP and ATP in aqueous solutions with the
spectrum for GMP.
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tive direct and indirect radiation effects to nu-
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